首页> 外文OA文献 >An augmented Lagrangian multiplier method based on a CHKS smoothing function for solving nonlinear bilevel programming problems
【2h】

An augmented Lagrangian multiplier method based on a CHKS smoothing function for solving nonlinear bilevel programming problems

机译:基于CHKS平滑函数的增强拉格朗日乘子方法,用于解决非线性双层规划问题

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Bilevel programming techniques deal with decision processes involving two decision makers with a hierarchical structure. In this paper, an augmented Lagrangian multiplier method is proposed to solve nonlinear bilevel programming (NBLP) problems. An NBLP problem is first transformed into a single level problem with complementary constraints by replacing the lower level problem with its Karush-Kuhn-Tucker optimality condition, which is sequentially smoothed by a Chen-Harker-Kanzow-Smale (CHKS) smoothing function. An augmented Lagrangian multiplier method is then applied to solve the smoothed nonlinear program to obtain an approximate optimal solution of the NBLP problem. The asymptotic properties of the augmented Lagrangian multiplier method are analyzed and the condition for solution optimality is derived. Numerical results showing viability of the approach are reported. (C) 2013 Elsevier B.V. All rights reserved.
机译:双层编程技术处理涉及两个具有分层结构的决策者的决策过程。本文提出了一种增强的拉格朗日乘子方法来解决非线性双层规划(NBLP)问题。 NBLP问题首先通过用Karush-Kuhn-Tucker最优性条件代替低级问题,将其转化为具有互补约束的单级问题,然后通过Chen-Harker-Kanzow-Smale(CHKS)平滑函数对其进行平滑处理。然后,采用增强的拉格朗日乘数法来求解平滑的非线性程序,以获得NBLP问题的近似最优解。分析了增强拉格朗日乘子方法的渐近性质,并得出了求解最优性的条件。数值结果表明了该方法的可行性。 (C)2013 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号